
yaccviso — a tool for visualizing yacc grammars

Leon Aaron Kaplan

aaron@lo-res.org

October 14, 2006

This work was originaly performed during a “stu-
dent praktikum” at the Institute for Computer
Languages, Technical University of Vienna, Nov.
1997 - Jan. 1998.

Contents

1 Overview 1

2 Syntax 1

3 How to interpret the dot output 1

4 Functionality 2

5 Related work 3

6 Future Research 3

A known bugs 3

B References 3

1 Overview

Convention: whenever We refer to “yacc” in this
paper, we mean both bison and yacc.

A general knowledge of yacc is assumed.

yaccviso is a tool for visualizing the dependencies of
non-terminal and terminal symbols in a yacc gram-
mar. Thus it should help the person developing a
compiler in yacc to gain a fast overview over his or
her grammar file. The idea we had in mind while
developing yaccviso is that the person developing
his compiler should be able to quickly generate a
huge postscript poster of his or her grammar and

have it attached to his wall so that whenever ques-
tions arise all he or she has to do is to turn around
and take a look at the poster.

2 Syntax

Presently the invocation syntax is simple:
yaccviso [-h] [debugoptions] inputfile

where -h prints out a usage message and where
debugoptions are optional and are one of

• -d DDEBUG, turns on all debugging messages

• -d DFATAL, only fatal error messages are
printed

• -d DSCANDBG, debug messages while scanning
are printed

• -d DPARSEDBG, debug messages while parsing

• -d DSEMANALY, debug messages during se-
matic analysis

• -d DCODEGEN, debug messages during output
code generation

• -d DSYMTAB, debug messages concering sym-
bol tables

• -d DIO, debug messages during input output

• -d DWARNING, warning messages

The defaults for debugging are: -d DFATAL and -d

DWARNING. Other debug messages should be used
with care as they generate a lot of output on stderr.
If no input file is given, yaccviso will try to read
from stdin.
yaccviso will generate two output files:
depgraph.vcg and depgraph.dot the former
is an input file for the VCG tool, the latter an
input file for the dot tool.

1



3 How to interpret the dot

output

The file depgraph.dot when fed into the dot(1)
program via the line dot -Tps -o outputfilename

depgraph.dot will be laid out by dot(1) in the fol-
lowing fashion:

1. terminal symbols will be drawn in color (I used
gold, but you can search and replace that with
anything you wish of course, or modify the cor-
responding line in the file vcg.c - search for
“gold”)

2. a production consisting of a single line such as
A : A1 A2 A3 . . . will be printed like

A

1

where the “A” means that rule A depends on
the boxes below and the “1” means that all
the boxes below are terminal or non terminal
symbols on the right hand side of line one as
they appear in the order (i.e. A1 is before A2,
etc.). Note the self edge in the above example.

3. a rule consisting of multiple lines / productions
are drawn similar to

B

1 2

where the “1” and “2” refer to line one and line
two. Note that it is possible that a rule can
reference the same non terminal or terminal
symbol on the right hand side in different lines.
For example:
B : C D E

C F G;

C is used in both lines.

This scheme - every line of a rule spawns a
box in which subboxes are used to point to the
corresponding first, second, etc. dependency
allows for a clear distinction of dependencies.

Here I have to thank Axel Belifante of the Uni-
versity of Twente, Holland for his usefull code
examples.

4 Functionality

yaccviso caries out the fillowing steps when given
an input file:

1. scanning: at this step comments are elimi-
nated and ANSI C code as well as preprocessor
code which can appear within %{ ... %} sec-
tions or within actions is passed to the parser
as a specific semantic value (yylval). For this
purpose a special mini-scanner was written in
plain C. Thus the normal scanner interleaves
its operation with this mini scanner. The nor-
mal scanner (written in flex) will call the mini
scanner whenever neccessary. This way we
achieve a seperation of languages and we don’t
have to scan ANSI C, preproccesor cammands
and yacc files all in one flex scanner. The scan-
ner builds up a symbol table.

2



2. parsing: accompanied in the distribution you
will find a stripped yacc grammar file for pars-
ing yacc files (new grammar.txt). This gram-
mar is the base for our parser. In addition
the parser performs strict syntax error check-
ing and will print out meaningful error mes-
sages (cf. follow set, [2]). Finally it controls
the construction of a parse tree.

3. semantic analysis: the parse tree is traversed
and neccessary information is extracted and
inserted into a hash table with external ex-
tensions which in turn holds the information
about the dependencies.

4. code emitter: a collection of a few routines
which will search the dependencies hash ta-
ble and emit the dependency information in
two suitable languages: VCG and dot (dep-
graph.vcg, depgraph.dot).

5 Related work

yacc to dot (yacc2dot) - convert yacc files to dot
graph descriptions
Author: Philippe Oechslin (oechslindi.epfl.ch)
version: 1.0 date: 3.23.95
This gawk programm produces a graph layout for
the Dot program from a yacc grammar. However
it has many restrictions that our approach does
not have such as only one line per yacc rule. It
is much smaller though. yacc2dot is included in
the graphviz (i.e. dot) distribution.

6 Future Research

In future versions we want to add various well
known algorithms from the field of compiler con-
struction and graph theory such as dominator tree,
strongly connected components, finding of cycles
(i.e. to answer the question “which rules depend
on themselves directly or indirectly”) or subgraph
starting at a specific rule.
Any suggestions are welcome.

A known bugs

1. Thefollowing does not work:
#ifdef blabla

%}
#endif
Neither does:
#ifdef blabla
}
#endif
Neither does:
#ifdef blabla
{
#endif
But the following works:
#ifdef blabla
{ foobar }
#endif

In other words: these types of brackets
must always be well formed within a #ifdef
environment.

2. please report bugs as you see them accompa-
nied with the input grammar.

B References

References

[1] VCG, Visualisation of Compiler Graphs,
Georg Sander,
ftp://ftp.cs.uni-sb.de/pub/graphics/vcg

[2] Compiler Construction - Prinicples and De-
sign. Aho, Sehti, Ullmann, Addison Wesley

3


